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We revisit a classical problem in kinetic theory, transport through a slab of thickness L, when
particle free-path distributions have infinite variance but finite moments of order ¢ <@ < 2. After
many (isotropic) scatterings, particle trajectories x(n), n 2 0, are essentially 3-dimensional
discrete-time Lévy-stable random walks C‘Lévy-flights™) of index o truncated at random times
when a boundary is crossed. Starting at x{0) = 0 with a step into the z > O half-space, trajectories
end in either transmission (z(nT) 2 L, ny 20) or reflection (z(ng) <0, ng 2 1). The classic case is
for exponentially distributed steps with mean-free-path ¢, leading to {nT) ~ (L/6)? and normalized
flux (transmission probability) T.(L) ~ (Ul)’l. Numerical simulations of Lévy/Gauss transport
yield Tg(L) < L whether £ <o (1 cas2)orl =o (0 <a<l) Toderive this result from the
standard scaling relation, (z(n)*) =< n (recast here as {nT)q = L®). zero-crossing events for the
discrete-time Lévy-stable process must be described by the correlation dimension Dy = 1/2
(independent of a), rather than the better-known Hausdorff dimension D¢ = max{1-(l/a), 0}.
Applications to Earth’s climatic equilibrium and cloud remote sensing are discussed (including the
effect of non-isotropic scattering described by kemels with forward peaks).

1 Introduction and Overview

Their property of self-similarity and their probability density functions (PDFs) with
power-law tails have ensured Lévy flights a prominent place in the stochastic modeling of
dynamical, chemical, and even biological systems.1 Among all applications of Lévy
flight theory, the closest to their definition as random walks are in the realm of kinetic
transport, exploiting directly the defining property of Lévy deviates (namely, stability
under addition). In this specific context, previous studies using Lévy-stable step
- distributions have considered unboundcdzv3 and semi-infinite*> domains. Slab geometry

i+ oindS the next .lqgic'al,_s'tép‘zipﬁ. it is the ippfoéﬁate one for modeling a wide variety of

- ‘physical systems ranging from shields in nuclear reactors to planetary atmospheres.
To date, the problem of transport through plane-parallel scattering media has been

_treated in full detail only for exponential and Gaussian particle free-path distributions,
respectively in mathematical frameworks provided radiative transfer® and diffusion’
_ theories. By focusing on the most basic scaling property (particle transmission
probability with respect to slab thickness), we further the theory of particulate transport
in finite media under circumstances where free-path distributions have power-law tails.
In the next section, required elemeats of random-walk theory are surveyed. including a
recent result by Frisch and Frisch? on the universality of the probability of escape from a
- half-space. In section 3, we obtain numerically and as corollaries of the Frisch’s theorem
scaling relations for steady-state transmission probability and the associated mean transit
“time for Gaussian and symmetric Lévy step-distributions. We summarize our findings in
section 4 and discuss in section 5 some of their more important implications for current
issues in atmospheric radiation. In an appendix, we show how diffusion —normal or
not— can be adapted to situations (such as the interaction of clouds with solar photons)
“-where the scattering kernel is peaked in the forward direction.
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2 Background and Notation

2.1 Unbounded Random Walks

Consider a d-dimensional discrete-time random walk starting at the origin (x(0) = 0).
After n identically distributed steps {s()) € R4, j=0,....n-1} and n—1 scatterings. the
random position-vector of the particle is

n-
x(n) = Zs(j) e R4, n>0. ¢))
j=0
We use
s = s, = V52 (2a)
to denote the random (Euclidean) distance covered between two scattering events, and
Q=s/lsll,e Eg={x e R, Ilxll; = 1) (2b)

for the random unit-vector indicating direction of travel, assumed independent of s. Thus
Sm =5Qm(m=1,...d) 3)

denotes a component of the random step-vector. In some cases, a common PDF for all
the s;,’s is used; in others, a law for s is prescribed and Q is drawn from the uniform
distribution on E4.9

T~ most-studied type of random walk by far uses (zero-mean) Gaussian steps, in

which case:
(x(n)?)g = [do?n, @)

where ¢ = \J(smz) (m = 1,...,d) is the root-mean-square (rms) step-size in each direction.
Constant (degenerate) steps are also very popular, especially when a discrete Q-space
keeps the particles on a regular grid. Exponential step-distributions with mean-free-path
(mfp) ¢ = {s) play a key role in kinetic theory (cf. Appendix). In both cases, the same
scaling property is obtained as in (4} with o2 =£2/d, replacing however “=" by “=", in the
=-limit n.>> 1 (law of large numbers, applicable here since step variance 02 < ). In all of

: ihe above sntuat:ons, particle trajectories are described as Brownian motion (Bm).

There was been a sustained interest! in the physics coinmumty in random walks with

ksymmemc) Lévy-stable step distributions, better described® as Lévy “flights” because of

the rare but large jumps that lead to {s2) = oo, and possibly even {s) = . The stability
property of symmetric Lévy deviates here reads as

n-1
Zsm(i) 4 pVag, ©) (m = 1,....d) (5a)
o d=00 i
where “=” ‘means “1dcnt|cal in: dlstnbutwn ” This is equnvalcnt9 to
C (enpliksmd)y = expl~(clk)] (m = 1,....d). (Sb)

2 In the Appendix, we show that this isotropy assumption is not too restrictive as long as the
system is dominated by high orders-of-scattering. We rescale the steps s and the orders-of-
scatterings n to accommodate situations where the scattering probability peaks in the forward
direction. thus inducing directional correlations in the otherwise random walk.
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where 0 < o0 < 2 is the Lévy “index” (moments {Is,|9) of order g 2 a are divergent) and

¢ 2 0 is an amplitude parameter, like  in the Gaussian case (which is retrieved in the
limit a — 27). Either of Eqgs. (5a.b) uniquely defines a symmetric Lévy law but its PDF
is known in closed-form only if a0 = 1: dP(sy) =X~ 1 ds/c)/ [14(sm/c)?] (Cauchy’s law).

Combined with the definition in Eq. (1), (5a) leads to a counterpart of the scaling
relation in Eq. (4) for Lévy flights:

(M%) ~ c%n (n>1) ©6)

for a finite sample, the prefactor increasing logarithmically with sample size.
2.2 Semi-Infinite Geometry, 1 — The Universality of Escape Probability

Consider random walks confined to the half-space x4 > 0; for instance, ind = 3 we have
xy=x€ R, x;=ye R,andx3=z¢ R+. Trajectories start at xg = 0 with a step where
54(0) > 0 and terminate at the first occurrence of x4(n) = Z",'sd(i) < 0, thus defining the
random escape time nR. Frisch and Frisch recently showed? that, under quite general
conditions,

Probe{ng >N} = 9 PealR) = N20. (Ta)

N+1

Their result is universal with respect to the distribution for s4. For N = 0,1223,..
Probe{ng > N} =1, 1/2,3/8, 5/16, ...; Sterling’s formula yields asymptotically

_@N)!
2Nn2®

Prob.{nr > N} L N> 1. (7b)

Van
Thus po(nR) ~ nR"3’2, hence (nr9) = = if g = 1/2; in particular, the mean escape time is
infinite.

The special case where path distributions are exponential is relevant to
(monochromatic) radiative transfer theory which is based on a Boltzmann-type equation
for photons;6 in such radiation problems, scattering probability is denoted “A” or “Wy”
and there is often a small probability of absorption 1-A = € at each interaction. Bulk

% absorptancé A(E) goés a7 g; identifying A(€) with a truncation of the asymptotic

distribution function in (7b), A(€) = Probe.{nR > n'(g)}, leads to nfE©=e>1. Asa

: - resuit of the remarkable universality of -(7b), “*V e-type” laws prevail in non-LTE,2
“spectral line, 33 and broad-band!0 transfer problems where non-exponential effective free-

path distributions arise.
2.2 Semi-lhﬁnite Geometry, 2 — Interpretation in Terms of F ractal Geometry

In the above, we implicitly focused on events that define the “zero-crossing” set of the
random process xg(fp) = x4(n) € R, tp = ndt > 0. in the continuous time limit (6t — 0,
'n — o). In particular, Equation (7b) reflects the well-known fact that the zero-set of Bm
(o = 2 steps) has Hausdorff dimension Dg = 1/2. The heuristic argument leading to this
uses (a) the graph dimension Dy = 3/2 of Bm (which is self-affine with Hurst exponent

o Hi=112= 2-Dyg) and (b) the fractal intersection theorem: Df = max{Dg—l,O}. The

same reasoning tells us that the zero-set of Lévy flights of index o has fractal dimension
Dg(a) = max{Dg(a)—l, 0} = max{1-(1/at), 0} since Hi(a) = min{1/a, 1} follows from
Eqgs. (5b-6).!1 However, the result in Eq.-(7b) is independent of a <2.




This paradox is resolved by noting that the scaling in (7b) is not directly related to
the Hausdorff/box-counting dimension used implicitly in the geometrical argument based
on the intersection theorem. Rather (7b) is a (2-point) statistical statement implying that
the correlation dimension D9 of the zero-crossing set is 1/2 for all a’s. Indeed, the
question of interest is not ‘Does a time-interval of length t positioned at random contains
any number of zero-crossings?” but rather ‘Given a zero—crossing at 1, is there exactly one
other such event at a range < T =ngrd:?". Introducing codimensions, the probabilistic
answers are: Prob{‘yes’} « t1=D¢, as 1 — 0 (with 8¢), to the former question; and
Prob{‘yes’ } = 1102 for the latter. Note that the second question only makes sense for a
large but finite number of points.!2

The key assumption in the Frisch’s derivation is the statistical independence of the
sequence of steps in the random walk. For Gaussian (o = 2) or Lévy (0 < & < 2) steps,
x4(?) is a strictly scale-invariant process with stationary increments, hence

(x4t —x L)) ~ 799, (8a)
Gauss: H(g)=1/2
Where Lévy: H(q) =min{1/a,1/q} (8b)

In the latter (0t < 2) case, the moments of order g 2 o are actually infinite (using bone
fide ensemble-averaging); the scaling in (8a,b) applies only to finite samples.!3
Setting ¢ = 2 in Eq. (8a) for T and for 21, we obtain®

([xg(t+20)-x g1+ D [x g+ -3 2D]) = RQHEI21 — Dy([x g1+ 1) -x1(0)]2). ©

The Frisch’s requirement is therefore H(2) = 1/2 and is, according to Eq. (8b), verified by
all types of Lévy flight (of finite length).

It is noteworthy that H(2) in Eq. (9) is related to the Hurst exponent H1 = H(1) only
by inequality: namely, H(1) 2 H(2).1% A famous example of the limiting (equality) case
is fractional Bm (fBm) which has H(q) = H; € (0.1)—{1/2}, hence the zero-set capacity
dimension Df(H1) = max{Dg(H1)-1, 0} = 1-H] # 1/2. So, if x4(n) is described by fBm,
it does not belong to the universality class described in the previous section.?

3 - Transmission Through a: Finite Plane-Parallel§ Medium

i mor.We now:confine the particle’s random ‘walk between the liyper-plancs xq = 0 (where it
=or e cgtartsyafd xg = L < oo (Where it'ends, in the event of a transmittance).

3.1 Gaussian Case

We now ask what the mean transit time nT is for a transmitted particle. To answer this

question, we “‘solve” Eq. (4) for n when x1(n) = ... = xg(n) = L, hence (X(n)2>g =dL?:
(rT)g = Z"TPL('!T) ~ (LI6)2, 6 < L < . (10)
n=0 :

H

b Solar photons scattering off cloud droplets for instance have positive directional
correlations, hence “persistence” in the same sense as used in Ref. 8, i.e., H(2) > 1/2 in Eg.
(9); however, these correlations decay in finite time (see Appendix for details). So, rather than
changing the overall scaling to one with H(2) > 1/2, they introduce an inner time-scale
(corresponding to a few forward scatterings) that is naturally accounted for in the diffusion
approximation by defining the “transport” mfp. .
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The implicit statistical condition for this approximate method of “solution” to work is
that the PDF of x(n) is reasonably narrow for large n; this is certainly true for Gaussian
processes in the following sense: () > (ll:r(n)llz)(;2 (Schwartz’s inequality) but by a
constant factor of O(1), for given d.

The domain boundary at x4 = L acts physically as a Brownian particle absorber, so
we can estimate the probability of reaching it simply by truncating the (L = )
distribution in Eq. (7b):

T(L) = Probe{ng > {nT)G} ~ L2462 V2 ~ (LIo) 1, L > 0. an

Exponential path distributions ind =3 (mfp = £) have been extensively studied in the
framework of linear transport theory (primarily for photons and neutrons); in this case,
the “asymptotic” or “diffusion” solution,!3 valid in the limit L/¢ = optical thickness >
1, is Te(L) = 1/[1+constantx(L/t)] where the constant depends on details of the scattering
and illumination. Since Te(L) ~ (LIZ)‘I, this case is in the universality class defined by
Gaussian steps (which have ¢ = (llsll2)g = V(s = oV d).

3.2 Lévy Case

The mean transit time for a bounded Lévy flight through a slab of finite thickness L can
be estimated from the (finite-sample) scaling property in Eq. (6) in the same way as in the
(ensemble-average) Gaussian case and Eq. (4):

{nT) ~ L%, ¢ K L < oo (12)

However, the interpretation is somewhat different because Lévy processes are far from
being narrowly distributed. The statistical moment of order ¢ = o in Eq. (6) is
logarithmically divergent with sample size, meaning that estimates are dominated by the
largest event. The interpretation of the scaling relation in Eq. (12) is that, on average, a
deviation of magnitude L will almost surely occur before or soon after n steps are taken.

We can now invoke the universality of the asymptotic escape probability distribution
. _____in(7b)for L = = to obtain the transmission probability from (12):

=+ 57 This relation'is readily verified numerically in d = 1 with the following pseudo-code that

“ - “Tuses a Box/Muller-type algorithm for generating symmetric Lévy-stable deviates:16
set: oonstant alpha in (0,2} function: Sym lLevy_1(alpha)
“set: omstant c =1 C
set: omstant L > 0 Generates unitary symmetric Lévy deviate.
set: oonstant N tot >> 1 Uses a pseudo-random muber generator md(),
set: variable NL =0 uniform on (0,1), and cnstant pi = 3.14...

set: variableN =0
a_irw = 1.0/alpha

- while N < N tot, do: a_irvml = a inv-1.0

1 z=0
s = c*SymLevy. 1(alpha)
 if N =0, then: s <- abs(s)
N<-N+1
Tz <=z ¥§87

if z<0, then: go to 1 . . . .
ifz>L thn: NL< NL+1, gotol Symlewl=/{ sin(a phi) /cos (phi) **a_inv )
*{ cos(phi~a_phi)/exp rv )**a_irvml

ep rv = -log(rmd()) <
Cphi = pi*(0.5-md();
aphi = alpha*phi

output: log(L), log(N L/N tot)




4 Summary

We have investigated analytically and numerically the scaling properties of particle
transport by normal (Gauss) and anomalous (Lévy) diffusive motion through a slab of
finite thickness L. In the process, we have argued that the operationally well-defined
correlation (D7) and box-counting (Dg) dimensions of the zero-crossing sets for Lévy
flights of large but finite length differ: Df = max{1—(1/x), 0}, and D2 = 1/2,0<a < 2.
We have also shown (in the Appendix) how to bring random walks with directional
correlations into the fold of diffusion theory by appropriate spatio-temporal rescaling.

5 Application: How Cloud Inhomogeneity Reduces the Earth’s Albedo

Lévy (and otherwise “stretched”) photon free-path distributions have been used in radiative
transfer for a number of primarily astrophysical applications. 24 The main motivation
for using them (in lieu of Brownian motion) here, in aunospheric radiation modeling, is
to emulate the overall (“mean-field”) effect of the spatial variability of the density of
scatterers —primarily cloud droplets— which is still very poorly understood.

In stratus cloud decks (which look rather bland from below, above, and inside), liquid
water density is observed!? to vary by more than an order of magnitude over scales
ranging from =10 m to =10 km, furthermore obeying multifractal 2-point statistics. 18
Other cloud types exhibit even stronger variability. In-cloud extinction (the inverse of
local pk..:on mfp) is proportional to density; so photon mfp —much like “visibility”
through an airplane window— varies inversely with density,¢ from only a few meters to
several hundred. Recent analyses of liquid water measurements at sub-mfp (cm to m)
scales have uncovered considerable variability.!? These rapid density fluctuations are
guaranteed to perturb the photon free-path distribution away from the standard exponential
case and this perturbation is necessarily in the direction of statistically longer paths. 20,21
In absence of cloud, incoming solar photons have only about a 1+20 chance of being
(Raleigh) scattered by the molecular atmosphere. implying a mfp in excess of 100 km at

an aLtltud;" of - -—8 km where. densuy is._average (=e times less at sea level). The

:_atmospherc S acrosol load (dust, soot, volcanic, organic, etc.) is highly variable in space

. ~-and. Ume, in all cases, it reduces photon mfp, especially in honzontal directions closc to

m(l e., msnde clouds) travelmg less than a meter between scatterings, and they can “fly”
_many kllomctcrs from space-to-surface or vice-versa, cloud-to-cloud, cloud-to/from-

~ surface, or cloud-to/from-space. Power-law (or Lévy-stable) distributions are therefore

well-suited to model photon free-paths globally.
In Appendix A, we recall that the various photon mfp values quoted above must be
converted into -
afowien oier. . “transport” mfp = (usual) mfp / (1-g) ' (14)
“before bemg identified with ¢ in sections 2-3; numerically, g = 0.75-0.85 in typical

““‘gerosol layers and clouds, s6(1—g)~1 ='4-7, and g = 0 for molecular Raleigh scattering.

In the following discussion for d = 3, we limit ourselves to 1 < o < 2, so that we can

€ This connection is non-trivial for true mfg (an inherently non-local quantity), as opposed to
local mfp (the inverse of local extinction).2




take the (transport) mfp £ = (lisli2)_ as finite. The new result in Eq. (13) can by merged
with the standard one in Eq. (11) to read as

T - (5. (15)

So, at given total optical depth (L/{, that we assume =1 or larger), the more
inhomogeneous the cloudy atmospheric column (Lévy index  decreases), the more
transmissive, hence less reflective, it becomes. This trend has been observed in many
numerical studies of the bulk radiative propestics of heterogeneous cloud models fractal or
not.22 This means that using the standard (@ = 2) model introduces a systematic bias
that is now being corrected for in the radiative modules of climate forecasting models,23
and soon in cloud remote-sensing schemes based on passive radiometry. 4
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Appendix: Diffusion Theory for Directionally-Correlated Random Walks

In many situations of physicai interest, differential cross-section for scattering is not
isotropic; however, it often depends only on Q(i)-Q(i+1) = cos0;, the cosine of the
scattering angle, not on azimuthal angle(s). In this case, the so-called “asymmetry factor”

= (Q(i)Q(i+1)) = {cosBs) € [-1,+1] (A1)

is a first-order descriptor of the positively (g > 0) or negatively (g < 0) weighted PDF of

cosfs. Extreme examples: if g = 1, there is no scattering per se because it is always in

-— the forward- direction; if scattering is isotropic, then g = 0, and Q in Eq. (2b) is

weseste- S yniformly  distributed on Zy.  Isotropy is a reasonable approximation for neutron
"7 " "Scattering in a moderator, not for solar photons in clouds where?3 g = 0.85.

* In this appendix, we 'show that the effect of positive (g > 0) directional correlations

—in essence, an enhancement of ballistic travel— can be absorbed into a rescaling of the

“free paths by (1-g)~! > 1, and the number of scatterings by (1-g) < 1. With these

precautions, we can continue to use diffusion —either normal (Gauss-type steps) or

“anomalous (Lévy-type steps)— to model particle transport.

A.l Forward-Peaked Scattering Kernels ford=1,2, 3

-1t -is-convenient, especially for numerical simulations, to have a simple model for the -
scattering kernel (normalized differential cross-section, or scattering-angle PDF) t!'at,
~beyond 65 = cos™1{Q(i)+Q(i+1)], depends on a few adjustable parameters. In d~ 3
“-=- 7 radiative transfer, the kernel is called a “phase-function” and the Heney—Greens..in
mode]26
1 do (1 1-g2
p}(es) = O_X Q= (41[) [l+g2—2g00565]3/2 ’

dQ = Sinesdesd(p, (A.2)
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is by far the most popular. This is partially due to the existence of an inverse cumulative
probability cos@s = P~1(€), 0 <& < 1, where P(X) = Prob{—1 < cosbs < X} in closed-
form for the purposes of Monte Carlo simulation, partially due to its simple, azimuthally
independent, spherical-harmonic expansion on E3: <p3(0)]Y(8)> =g/ 120.

A counterpart for this model was devc:loped2 specifically for simulations in d = 2:

_1 do _ o1y 1-g2 o
P2A8s) = o d " (Zn) 1+g2—2gcosO; d€2 = db. (A-3)

Here too, P~1(E) is expressible in closed-form, and the cosine-Fourier decomposition of
p2(0) on =3 is simple: <p,(0)jcosj0> = &.j20.

Sometimes (e.g., in §3.2), it is sufficient to conduct transport simulations in d = 1
where direction-space reduces to £ = {£1} = {cos6s; 65 = O,x}; here scattering is either
forward. with probability p1(8 = 0) = (1-g)/2, or backward, with p1(0 = 1) = (1+8)/2.

A.2 Multiple Scattering as a Random Walk in Direction-Space

Let ©(0) be the initial direction of propagation in (or position on) Z4; by symmetry, the
average position (Q(n)) = ((Q1(n).....Q4(n))) = 2(0) for any number of scatterings n. By
taking €(0) as the polar axis, we can use 8(n) = cos~1(Q(0)+€(n)) to measure the (great-
circle) distance on =4 between departure and arrival points; so we will have (8(n)) =0, by
symmetry. From (A.1), we know that (Q0)-Q(1)) = ... = (Q(n—1)2(n)) = g. We can
show by induction that

(cosB(n)) = (Q(0)Q2(n)) = g". (A4)

Proof: The only component of interest is Qg(n+1) = cos8(n+1); all others vanish upon
averaging, by symmetry. In d = 2, cos8(n+1) = cosB(n+1)cosOs—sinB(n+1)sinfg; the
only difference for d > 2 is the presence of an (uncorrelated, zero-average) azimuthal factor
in the second term. Therefore {cos8(n+1)) = {cos8(n)Xcosbs) = {cosB(n))g for all n and
any d. QED. '

_ Equation (A .4) says that g2 is the “effective” asymmetry factor after two scatterings,
‘and so on. The ultimate consequence of (A.4) is that Q(n) ¢an be almost anywhere on Z4
—say, we have (cos8(n)) = 1/e— as soon as n = (-Ing)~1; iif g < 1, this reads as

) n=(l-gy'l. (A.5)

This is roughly the number of forward scatterings required for the particle to loose all
memory of its original direction of travel. Finally, we note that this trend towards
Q-isotropy of multiply-scattered radiation occurs for all (non-trivial) phase functions.

A.3 Coupling Between Physical-Space and Direction-Space Statistics

We now investigate the spatial consequences of (A.4-5). "Assume the particle executes
the directionally-correlated random walk, leaving the origin in direction Qg at time n = 0;
in the discrete-time picture, it is then displaced from position x(0) = 0 to x(1) = s(0)(0),
where 5(0) is the initial step-size. Holding (0) fixed. {(x(1)) = (s(0))S2(0) = £€2(0) where
¢ is the mfp. We can see from Eq. (A.1) that, after the first scattering and second step, we
have (x(2)) = Q(0)[{s(0))+{s(1)XQ(0)+Q(1))] = (1+g)£2(0). In general, the assumed
independence of step-sizes and step-directions leads to










